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Abstract
A stabilized finite element framework for high-speed compressible flows is presented. The Streamline-Upwind/Petrov–
Galerkin formulation augmented with discontinuity-capturing (DC) are the main constituents of the framework that enable
accurate, efficient, and stable simulations in this flow regime. Full- and reduced-energy formulations are employed for this
class of flow problems and their relative accuracy is assessed. In addition, a recently developed DC formulation is presented
and is shown to be particularly well suited for hypersonic flows. Several verification and validation cases, ranging from 1D to
3D flows and supersonic to the hypersonic regimes, show the excellent performance of the proposed framework and set the
stage for its deployment on more advanced applications.

Keywords Compressible flows · Stabilized methods · Shock-capturing · Finite elements · Supersonic flows · Hypersonic
flows

1 Introduction

In computational fluid dynamics several approaches have
been used in order to find the numerical solution of the
Navier–Stokes equations: finite difference (FDM), finite
volume (FVM) and finite element (FEM) methods. While
FDM requires structured grids, even though curved cells
are allowed, the FVM offers good geometric flexibility and
no constraints on the mesh type are required. Similar to
the FVM, the FEM works for both structured and unstruc-
tured grids with curved or rectilinear cells (or elements). For
these reasons, both methods, FVM and FEM, can easily han-
dle very complex geometries [75]. The superiority of FEM
with respect to FVM is in the ease of implementation of the
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boundary conditions and the ease in obtaining higher-order
accuracy, which are not trivial in FVM [18].

In this work the focus will be exclusively on the FEM
numerical technique. The FEM has its origin in the structural
mechanics field. It was then applied to the solution of fluid
dynamics problems, not without any difficulties. Indeed, a lot
of research has been dedicated to the method since the end of
the 1970s [59] to the development of stabilized formulations
for compressible [75] and incompressible flows [8]. The sub-
ject of the stabilized formulations for FEM in fluid dynamic
is still an active research field and it is thanks to these for-
mulations that FEM became a valid numerical technique for
the study of fluid dynamics problems (turbulent and laminar
flows, incompressible and compressible flows over a wide
range of flow regimes).

The first finite element stabilized formulation, based
on the streamline upwind concept, was developed as a
Petrov–Galerkin formulation by [8] for the linear advection–
diffusion equation and the incompressible Navier–Stokes
equations. In [8], the authors showed the accuracy and robust-
ness of the Streamline-Upwind/Petrov–Galerkin (SUPG)
formulation for several numerical cases. In that period,
other researchers developed upwind finite elements approx-
imations in order to enhance the stability of convection
dominated flows, such as in [5,58,59]. A mathematical anal-
ysis assessing the stability and order of convergence of the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-020-01963-6&domain=pdf


786 Computational Mechanics (2021) 67:785–809

FEM for convection–diffusion problems and linear hyper-
bolic problems can be found in [38]. The first step towards
the generalization of the SUPG formulation to the compress-
ible flows was made in [34,75,76]. In these works, the class
of Petrov–Galerkin finite element formulation based on the
streamline upwindmethods was developed for the compress-
ible Euler equations. The main idea was to write the system
of conservation laws in quasi-linear form using the Jaco-
bian matrix of the flux vector in the discontinuous part of the
weighting function [34]. In [76] the definition of the stabiliza-
tion parameter τττ was identified as subject of further research,
since the accuracy of the solution depends on it. In order to
select the optimal value of the parameter τ for every equation
of the system describing the problem, it was proposed in [31]
to define τττ as a matrix and by doing so separate τττ could be
defined for each degree of freedom. The work presented in
[31] was generalized to the space-time finite element formu-
lations for compressibleflowsby [54],where a newdesign for
τττ parameter was proposed. Up to this point it was established
that the SUPG finite element formulations for convection-
dominated flows produce oscillation-free solutions, unlike
the classical Galerkin methods. In this regard, interesting
results have been obtained when the conservation laws were
solved in a particular set of entropy variables.A discussion on
the finite element formulations derived in entropy variables
can be found in [29,30]. In [29], it was shown that sym-
metric forms of the compressible Euler and Navier–Stokes
equations can be obtained by selecting a particular set of
entropy variables. The classical Galerkin weighted resid-
uals formulation was adopted to discretize the symmetric
Navier–Stokes equations resulting in an intrinsically stable
discrete solution which always satisfies the second law of
thermodynamic [29]. The authors of [29] concluded that
whenever a discontinuity in the solution field is present, the
Galerkin method was not effective and a Petrov–Galerkin
formulation was necessary to solve this class of problems.
A convergence analysis of FEM, based on streamline diffu-
sion techniques with and without shock-capturing term, for
hyperbolic conservation laws, was carried out in [39,40,57].
The authors showed the convergence of the finite elements
solution to the entropy solution (physical solution) of the
conservation laws stating that the results could be extended
to amultidimensional system of conservation laws derived in
entropy variables. The stabilized finite element formulations
supplemented with shock-capturing terms in two different
sets of variables, conservation and entropy variables, have
been tested and compared in [45,46]. The results showed no
superiority of one set of variables with respect to the other.
Both choices in variables resulted in accurate solutions of the
compressible flows and almost no differences in the two dis-
crete solutions were observed [45]. From an analysis of finite
element formulations in entropy variables, it was clear that
the streamline upwind formulations could not perform well

whenever a discontinuity was present in the solution field.
Although the SUPG term ensured an oscillation-free dis-
crete solution when the solution was smooth, it was found to
be rather ineffective with cases involving discontinuos exact
solutions. In those scenarios, a discrete solution with spuri-
ous oscillations was produced. In order to solve the problem
the discontinuity-capturing (DC) term (or shock-capturing)
was required. The DC term was first added to the SUPG for-
mulation for the linear scalar convection–diffusion equation
in [33] and to the convection–diffusion–reaction equation
in [78]. It was generalized to multidimensional systems of
advective–diffusion equations in [32]. From the DC term in
entropy variables defined in [33], a DC parameter in conser-
vation variables was defined in [45,46].

The Galerkin Least Squares (GLS) method represents
another stabilized formulation which originates from a gen-
eralization of the SUPG method. The method was first
developed for advection–diffusion equations in [28]. The
GLS formulation for compressible Navier–Stokes equations
was extended to any set of variables in [23–25]. The extension
of the method to any choice of variables was derived starting
from the GLS formulation in entropy variables. The perfor-
mance comparison among the different sets of variables was
described in [24,25]. It was stated that only a set of entropy
variables could satisfy the second law of thermodynamics
regardless of the use of any dissipation terms, while for all
other sets of variables (conservation and primitive variables)
dissipation terms were necessary, such as the GLS and the
DC operator. Moreover, it was observed that both entropy
and pressure primitive variables perform well in the incom-
pressible limit of the compressible Navier–Stokes equations
and for this reason they represent a good choice in a unified
compressible-incompressible numerical framework [24,25].
The space-time GLS formulation in entropy variables sup-
plemented with a DC term was applied to the solution of the
compressible Euler and Navier–Stokes equations in [54]. An
adaption of the GLS formulation to hypersonic flows compu-
tationwith the entropy variableswas described in [13], where
instead of the perfect gas model an equilibrium chemistry
algorithmwas implemented. The initial formulation for ther-
mochemical nonequilibrium with the entropy variables was
also presented in [14]. First moving-mesh computations with
the compressible-flowSUPGmethodwere reported in 1990s,
using the space-time compressible-flow SUPG method, first
in 2D (axi-symmetric), for air intake of a jet engine atM= 1.4
in [2,68] and then in 3D, for two high-speed trains passing
each other in a tunnel, in [66]. Most recently, the SUPG-
based finite element formulation was presented in [42] using
conservative variables to model the hypersonic atmospheric
entry of large vehicles with an ablative thermal protection
system.

A lot of research has been dedicated to find the cor-
rect expression for the stabilization parameters (for both
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SUPG/GLS and DC terms). The stabilization parameters
are indeed very important, since they affect the accuracy
of the method and they should be selected in a way that a
good compromise between accuracy and stability is achieved
[23]. An approach was developed by [77], where the stabi-
lization parameters were computed based on element-level
matrices and vectors. The parameters developed in [77] took
into account the element length scales, advection and ele-
ment Reynolds number and were applied to the unsteady
advection–diffusion equation and to theNavier–Stokes equa-
tions of incompressible flows. The stabilization parameters
developed for each element using the advection-dominated
and diffusion-dominated limits are described in [70,71,74].
The element level stabilization parameters were applied to
the classic SUPG formulation developed in [8] supplemented
by the shock-capturing of [46] for the inviscid compressible
flows in [11,12]. In particular, in [12] the parameters were
computed for each degree of freedom of each element. Fur-
ther discussion on the computation of the time parameters
of the stabilized formulation for compressible flows can be
found in [72,73]. Following the first introduction of the DC
term for the scalar advection–diffusion equation [33], another
DC term was proposed in [78] in the context of the SUPG
formulation for the convection–diffusion–reaction equations.
The DC term introduced in [78] contains a second element
length scale in the direction of the solution gradient (the first
element length scale in the advection direction being the one
used in the SUPG term definition). Using this element length
scale in the direction of the solution gradient, the DC direc-
tional dissipation (DCDD) was developed and introduced in
[69,71]. The DCDD parameter is selected in a way that the
method is not over diffusive in the particular case of advec-
tion parallel to the solution strong gradient. Simpler and less
computationally expensive DC parameters with respect to
the one introduced in [46], were developed in [73,79] in the
context of stabilized finite element formulation for compress-
ible flows. The new shock-capturing parameters, categorized
as YZβ Shock-Capturing [79–81], were derived from the
DCDD idea for incompressible flows and unlike the DC
developed in [46], their definition was based on conservation
variables instead of entropy variables. In [80,81], the SUPG
formulation supplemented with the YZβ Shock-Capturing
was applied to the solution of inviscid supersonic flows and
it proved to yield better shock quality than the SUPG for-
mulation [8] with the DC developed in [46]. A number of
new developments happened in the last few years in stabi-
lization parameters and element lengths, including those for
isogeometric discretization and those with node-numbering
invariance. Some of them were summarized in [7]. We refer
the interested reader to [44,50,61–64,82].

Some of the earliest compressible-flow computationswith
the SUPG plus DC method in complex engineering prob-
lems were reported in 1990s, for a delta-wing in [67,68], for

a commercial aircraft in [68], for a missile in [56], for two
high-speed trains in a tunnel in [66], and for a fighter aircraft
in [66]. Most recently, the SUPG formulation was also suc-
cessfully applied to several complex engineering problems
in compressible flow regime such as gas turbines [7,43,84],
rotorcraft [83], full vehicle aerodynamics [1], spacecraft
parachute aerodynamics [41,60], and related applications
in incompressible regime (e.g. analysis of the turbocharger
[51,52]), however, little research has been dedicated to inves-
tigating the method in hypersonic flow regimes. It is the aim
of the current work to investigate in details the performance
of the SUPG-based finite element formulation for hypersonic
flow modeling, compare two formulations with the different
forms of the energy conservation equation and examine new
DC operator.

The rest of the paper is structured as follows. In Sect. 2
the governing equations of viscous compressible flows are
described as well as the steps to obtain the finite element
SUPG formulation supplemented with a DC operator. The
validation and verification of the stabilized finite element
formulation is shown in Sect. 3. The results of numerical test
cases for high speed flows, including the 1D Sod’s problem,
the 2D Mach 6 flat plate, the 2D Mach 10 oblique shock, the
2DMach 17 cylinder case, and the 3DMach 6Viking Lander
Capsule, are also presented in Sect. 3. Concluding remarks
and future research are summarized in Sect. 4.

2 Methodology

2.1 Governing equations

The set of the governing equations solved in this work is the
system of Navier–Stokes equations for compressible flows
involving the conservation of mass

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

momentum

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u) + ∇ p = ∇ · τττ , (2)

and energy

∂ (ρetot )

∂t
+ ∇ · (ρuetot ) + ∇ · (pu) = ∇ · (τττu − q) , (3)

assuming no source terms. In the above equations, ρ is the
density, u is the velocity vector, p is the pressure, τττ is the
second-order viscous stress tensor

τττ = λ∇ · u + μ
(
(∇u) + (∇u)T

)
(4)
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and q is the heat conduction vector

q = −κ∇T , (5)

where λ is the bulk viscosity, μ is the dynamic viscosity and
κ is the thermal conductivity. In Eq. (3) etot is the total energy
defined as the sum of the internal and kinetic energies

etot = e + ‖u‖2
2

, (6)

where the internal energy is computed assuming a calorically
perfect gas:

e = cvT . (7)

Pressure, density, and internal energy are related through the
ideal gas equation of state

p = ρ(γ − 1)e, (8)

where γ is the adiabatic index.
The Navier–Stokes equations of compressible flows can

be compactly written as

Ũ,t + F̃
adv

i,i = F̃
di f f
i,i , (9)

where Ũ is a vector of conservation variables,

Ũ =

⎡
⎢⎢⎢⎢⎣

ρ

ρu1
ρu2
ρu3
ρetot

⎤
⎥⎥⎥⎥⎦

, (10)

index i = 1, ..., d, where d = 2, 3 is the space dimension,

and F̃
adv

i and F̃
di f f
i are the i th component of the advective

and diffusive fluxes, respectively, given by

F̃
adv

i =

⎡
⎢⎢⎢⎢⎣

ρui
ρuiu1 + pδ1i
ρuiu2 + pδ2i
ρuiu3 + pδ3i
ρui etot + pui

⎤
⎥⎥⎥⎥⎦

F̃
di f f
i =

⎡
⎢⎢⎢⎢⎣

0
τ1i
τ2i
τ3i

τi j u j − qi

⎤
⎥⎥⎥⎥⎦

. (11)

The advective flux vector can be further split in two terms as

F̃
adv

i = F̃
adv/p
i + F̃

p
i =

⎡
⎢⎢⎢⎢⎣

ρui
ρuiu1
ρuiu2
ρuiu3
ρui etot

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
pδ1i
pδ2i
pδ3i
pui

⎤
⎥⎥⎥⎥⎦

. (12)

We can simplify the compressible-flow equation system
by introducing themass andmomentumbalance in the energy
equation leading to

U,t + Fadv/p
i,i + Fp

i,i + Fsp = Fdi f f
i,i , (13)

where

U =

⎡
⎢⎢⎢⎢⎣

ρ

ρu1
ρu2
ρu3
ρe

⎤
⎥⎥⎥⎥⎦

(14)

Fadv
i = Fadv/p

i + Fp
i

=

⎡
⎢⎢⎢⎢⎣

ρui
ρuiu1
ρuiu2
ρuiu3
ρui e

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
pδ1i
pδ2i
pδ3i
0

⎤
⎥⎥⎥⎥⎦

Fdi f f
i =

⎡
⎢⎢⎢⎢⎣

0
τ1i
τ2i
τ3i
−qi

⎤
⎥⎥⎥⎥⎦

(15)

Fsp =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

pui,i − τi j u j,i

⎤
⎥⎥⎥⎥⎦

(16)

The flux vector Fsp is the contribution of stress power in the
energy equation.

As a result, we have two formulations which will be inves-
tigated in this work: The full-energy formulation defined by
Eqs. (9)–(12) and the reduced-energy formulation defined by
Eqs. (13)–(16). The latter formulation was presented in [84].

2.2 Weak formulations

The weak form of the problem can be obtained by applying
the method of weighted residuals. The strong form of the
Navier–Stokes equations ismultiplied by a vector-valued test
function W ∈ V, where V is a suitably chosen space of
test functions, and integrated over the spatial domain 
 with
boundary �. The integration by parts is then performed on
the pressure and diffusive fluxes resulting in

∫




W ·
(
Ũ,t + F̃

adv/p
i,i

)
d
 −

∫




W,i ·
(
F̃
p
i − F̃

di f f
i

)
d


+
∫

�h

W ·
(
F̃
p
i − F̃

di f f
i

)
ni d� = 0

(17)

for the full-energy form and in

∫




W ·
(
U,t + Fadv/p

i,i + Fsp
)
d
 −

∫




W,i ·
(
Fp
i − Fdi f f

i

)
d


+
∫

�h

W ·
(
Fp
i − Fdi f f

i

)
ni d� = 0

(18)
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for the reduced-energy form. Here, Ũ, F̃
adv/p
i , F̃

p
i , F̃

di f f
i and

U,Fadv/p
i ,Fp

i ,Fdi f f
i are assumed to be functions of Y, ni is

the i th component of the outward unit surface normal vector
n, and �h is the portion of � where the natural boundary
conditions are applied. The last term on the left-hand-side
of Eqs. (17) and (18) represents the known values of the
prescribed traction and heat-flux boundary conditions.

Equations (17) and (18)may be re-written in a quasi-linear
form using the pressure-primitive variables Y defined as

Y =

⎡
⎢⎢⎢⎢⎣

p
u1
u2
u3
T

⎤
⎥⎥⎥⎥⎦

. (19)

Given the suitably chosen space of vector-valued trial func-
tions S for the pressure-primitive variables, the weak form
of the Navier–Stokes equations of compressible flows for the
full-energy case may be stated as: Find Y ∈ S, such that for
all W ∈ V,

∫




W ·
(
Ã0Y,t + Ã

adv/p
i Y,i

)
d


−
∫




W,i ·
(
Ã

p
i Y − K̃i jY, j

)
d


+
∫

�h

W ·
(
F̃
p
i − F̃

di f f
i

)
nid� = 0,

(20)

and the reduced-energy case may be stated as: Find Y ∈ S,
such that for allW ∈ V,

∫




W ·
(
A0Y,t + Aadv/p

i Y,i + Asp
i Y,i

)
d


−
∫




W,i · (
Ap
i Y − Ki jY, j

)
d


+
∫

�h

W ·
(
Fp
i − Fdi f f

i

)
ni d� = 0.

(21)

Here, the matrices A0, A
adv/p
i , Ap

i , A
sp
i , Ki j , Ã0, Ã

adv/p
i ,

Ã
p
i , K̃i j are defined as

A0 = ∂U
∂Y

, Aadv/p
i = ∂Fadv/p

i

∂U
∂U
∂Y

,

Ap
i = ∂Fp

i

∂U
∂U
∂Y

, Asp
i = Fsp

Y,i
, Ki j = Fdi f f

i

Y, j
,

Ã0 = ∂Ũ
∂Y

, Ã
adv/p
i = ∂F̃

adv/p
i

∂Ũ

∂Ũ
∂Y

,

Ã
p
i = ∂F̃

p
i

∂Ũ

∂Ũ
∂Y

, K̃i j = F̃
di f f
i

Y, j
,

(22)

and the explicit expressions for the above matrices are given
in “Appendix A”.

2.3 SUPG and DC operators

We assume the fluid domain 
 is divided into Nel elements
each denoted by 
e and denote by Res(Y) the strong-form
residual of the Navier–Stokes equations of compressible
flows. We define the SUPG operator as follows:

BSUPG (W,Y) =
Nel∑
e=1

∫


e

((
A∗
i

)TW,i

)
· τττSUPGRes(Y) d
.

(23)

Here, τττSUPG is the stabilization matrix for the pressure-
primitive variables given by [25,84]

τττSUPG = A−1
0 τ̂ττSUPG, (24)

where τ̂ττSUPG is the stabilizationmatrix for conservation vari-
ables defined as [54,84]

τ̂ττSUPG =
(

4

�t2
I + Gi j Â∗

i Â
∗
j + CI Gi jGklK̂∗

ikK̂
∗
jl

)− 1
2

.

(25)

Here �t is the time step size, CI is a positive constant
derived from an appropriate element-wise inverse estimate
[37], and Gi j are the components of the element metric ten-
sor G defined as

Gi j =
d∑

k=1

∂ξk

∂xi

∂ξk

∂x j
, (26)

where x(ξ) is the element isoparametric mapping. In the
above expressions the definitions ofA∗

i and its conservation-

variable counterpart Â∗
i dependon the formulation employed.

In the full-energy casewe setA∗
i = Ãadv/p

i +Ãp
i , while in the

reduced-energy case we setA∗
i = Aadv/p

i +Ap
i +Asp

i . Like-
wise, K∗

i j = K̃i j for the full-energy case, K∗
i j = Ki j for the

reduced-energy case, and K̂∗
i j is their conservation-variable

counterpart. The definition of τ̂ττSUPG in Eq. (25) requires
computing the square-root-inverse of a 5 × 5 matrix in 3D,
which is computed numerically using the Denman–Beavers
algorithm [17,65,84].

Following the approach for the SUPG operator design, we
first define the DC operator for conservation variables as

Nel∑
e=1

∫


e
W,i · K̂DCU,i d
, (27)
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where K̂DC is thematrix-valuedDCviscosity. Changing vari-
ables from U to Y gives

Nel∑
e=1

∫


e
W,i · K̂DCA0Y,i d
, (28)

which, in turn, defines the DC viscosity matrix for the
pressure-primitive variables:

KDC = K̂DCA0. (29)

We assume a diagonal form of the DC viscosity matrix for
the conservation variables, namely,

K̂DC = diag
(
κ̂C, κ̂M, κ̂M, κ̂M, κ̂E

)
, (30)

and provide two definitions of the diagonal entries in what
follows.

• We refer to this version as DC1, which was proposed in
[84]:

κ̂C = CC
h |Res1|
|∇U1| , (31)

κ̂M = CM
h |Res2:d+1|
|∇U2:d+1| , (32)

κ̂E = CE
h |Resd+2|
|∇Ud+2| . (33)

• We refer to this version as DC2, which was proposed in
[7]:

κ̂C = min

(
CC

h |Res|w
|∇U|w , κ̂cap

)
, (34)

κ̂M = min

(
CM

h |Res|w
|∇U|w , κ̂cap

)
, (35)

κ̂E = min

(
CE

h |Res|w
|∇U|w , κ̂cap

)
. (36)

In the above definitions, h is the element size and CC, CM,
and CE are the O(1) positive constants corresponding to the
continuity, momentum, and energy equations, respectively.
Furthermore, in the definition of DC2, |Res|w is a weighted
norm of the compressible-flow equation residual

|Res|w = c2 |Res1| + ‖u‖ |Res2:d+1| + |Resd+2| , (37)

|∇U|w is a weighted norm of the conservation-variable
solution gradient

|∇U|w = c2 |∇U1| + ‖u‖ |∇U2:d+1| + |∇Ud+2| , (38)

κ̂cap is the maximum allowable value of the DC viscosity

κ̂cap =
((
u − û

) · G−1 (
u − û

) + c2tr(G−1)
) 1

2
, (39)

c is the sound speed, and G−1 is the inverse of the element
metric tensor.

Remark 1 TheDCviscosity definitions originate from the so-
called CAUDC technique [3]. It may also be viewed as YZβ

DC with β = 1. We also note that the CAU DC technique is
an extension of the “δ91” shock-capturing technique [45,46]
to unsteady flows. The CAU is residual-based in the context
of unsteady problems, while “δ91” was residual-based in the
context of steady, inviscid flows.

Remark 2 Note that in the definition of DC2 the weighted
norm appropriately scales the components of the residual
and solution gradient in order to measure the size of these
vectors that have entries of different dimensions.

Remark 3 Note the introduction of a DC viscosity upper
bound or “cap”, κ̂cap, which is a multi-dimensional gener-
alization of the upwind viscosity h(u + c)/2. While it is
expected that, on average, the residual-based definition of
the DC viscosity will stay well below the upwind limit, divi-
sion by the gradient norm can lead to local spikes in this
quantity, which are mitigated by the cap. The introduction
of the cap reduces the degree of nonlinearity associated with
the DC terms and, as a result, improves convergence of the
Newton–Rhapson iterations. The cap idea was introduced
and successfully employed in [6] for shock-capturing for
solids.

2.4 Complete formulation and solution procedure

The final semi-discrete SUPG formulation for compressible
flows supplemented by a DC operator is obtained by simply
adding the Galerkin, SUPG, and DC terms. The formulation
for the full-energy case becomes: Find Yh ∈ Sh , such that
for all Wh ∈ Vh ,

∫




Wh ·
(
Ã0Yh

,t + Ã
adv/p
i Yh

,i

)
d


−
∫




Wh
,i ·

(
Ã

p
i Y

h − K̃i jYh
, j

)
d


+
Nel∑
e=1

∫


e

((
A∗
i

)TWh
,i

)
· τττSUPGRes(Yh) d


+
Nel∑
e=1

∫


e
Wh

,i · KDCYh
,i d


+
∫

�h

Wh ·
(
F̃
p
i − F̃

di f f
i

)
nid� = 0,

(40)
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and for the reduced-energy case becomes: Find Yh ∈ Sh ,
such that for allWh ∈ Vh ,

∫




Wh ·
(
A0Yh

,t + Aadv/p
i Yh

,i + Asp
i Yh

,i

)
d


−
∫




Wh
,i ·

(
Ap
i Y

h − Ki jYh
, j

)
d


+
Nel∑
e=1

∫


e

((
A∗
i

)TWh
,i

)
· τττSUPGRes(Yh) d


+
Nel∑
e=1

∫


e
Wh

,i · KDCYh
,i d


+
∫

�h

Wh ·
(
Fp
i − Fdi f f

i

)
ni d� = 0.

(41)

The generalized-α method in [36] is used to integrate the
resulting systems in time. At each time step a non-linear
system of equations is solved using the Newton–Raphson
method.

Remark 4 The resulting linear equation systems at each non-
linear iteration is solved to a tolerance using the Generalized
Minimal Residual (GMRES) technique [53] with block-
diagonal preconditioning. Nodal blocks (4 × 4 in 2D and
5 × 5 in 3D) are extracted from the left-hand-side matrix,
LU factorization is performed for each nodal block, and the
linear equation system is left- and right-preconditioned using
the block-diagonal L−1 andU−1 matrices, respectively. This
simple choice leads to an efficient linear solver with excellent
parallel scaling.

3 Numerical results

In this section numerical examples of hypersonic flow sim-
ulations are presented. The main purpose of these numerical
test cases is to show the robustness and accuracy of the for-
mulation in applications of hypersonic flow regimes. The
1D Sod shock tube problem [55] is the first case selected to
perform a detailed comparison between the full and reduced
energy formulations. Next, the results of a 2D Mach 6 flat
plate [10] problemwith detailedmesh convergence study, are
presented. A Mach 10 NASA wedge test case [4] is shown,
followed by the Mach 17 flow over a cylinder problem [48]
to investigate the instabilities, namely ”Carbuncle problem”
[21], encountered when traditional CAU DC operator, DC1,
is used. An alternative definition of DC operator, DC2, that
alleviates this problem, is proposed. The Section concludes
with 3D simulation ofVikingLanderCapsule [20] and results
comparisons to NASA LAURA code and wind tunnel exper-
iment. In the following examples the DC1 operator is used,
unless stated otherwise.

3.1 1D Sod shock tube case

The shock tube case is a 1D, inviscid and unsteady case [55].
An initial diaphragm separates two regions of the same fluid
at rest and at different pressure and density. After the instan-
taneous removal of the diaphragm a shock wave propagates
in the low pressure region while an expansion wave prop-
agates in the opposite direction. The contact surface across
which pressure and velocity stay the same, propagates in
the same direction of the shock wave. In order to simulate
this case, the following initial conditions have been adopted
[55]: ρL = 1 [kg/m3], pL = 1 [Pa], uL = 0 [m/s], TL =
3.484e−3 [K] and ρR = 0.125 [kg/m3], pR = 0.1 [Pa],
uR = 0 [m/s], TR = 2.787e−3 [K], where subscript L and R
represent left and right regionswith respect to the diaphragm.
The specific heat ratio is γ = 1.4 and the gas constant is
R = 287 [J/(kgK)]. The length of the domain is L = 1 [m]
and two sets of meshes are investigated, i.e. the coarse mesh
of 103 elements and the fine one of 104 elements. For each
mesh, the simulations are carried out using both the full and
the reduced energy formulations. The results obtained from
the four simulations at the time instant t = 0.1 [s], are com-
pared with the analytical solution and shown in Fig. 1. In
Fig. 1 the internal energy is computed as e = cvT where cv

is the specific heat coefficient at constant volume.
Even though it cannot be fully appreciated in Fig. 1

because of the scale of the axis, the full energy formula-
tion gives more accurate estimates for all flow quantities in
all the regions. This is more evident in Fig. 1b, where the
reduced energy formulation underestimates the value of the
internal energy, e, in the post-shock region of the domain.
Figure 2 illustrates in detail the main features of the density
distribution, in particular the front and the tail of the expan-
sion fan, shown in Fig. 2a, b respectively, the contact surface
in Fig. 2c and the shock wave in Fig. 2d.

Both formulations perform very well in predicting the
location of the front wave of the expansion fan, showing
an excellent agreement with the analytical solution for the
fine mesh. Figure 2b shows that the reduced energy formula-
tion underpredicts the density value in the post-expansion
region, while the full energy formulation agrees with the
analytic solution. The location of the contact surface is cor-
rectly predicted by both formulations, but it can be seen in
Fig. 2c that the full energy formulation is more diffusive
than the reduced energy formulation. In Fig. 2c, d, it is evi-
dent that the reduced energy formulation overpredicts the
density value in the region between the contact surface and
the shock wave, while once again the full energy formula-
tion predictions are in excellent agreementwith the analytical
solution. Finally, Fig. 2d shows that the shock wave location
is correctly predicted by the full energy formulation, while
the reduced energy underpredicts the shock location with a
relative error with respect to the analytical value of 0.4%. In
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Fig. 1 Comparison of the numerical results for pressure (a), internal energy (b), velocity (c) and density (d) distributions with the analytical solution
of the Sod shock tube case [55]

general, the fine mesh results show less diffusive disconti-
nuities (contact surface and shock wave), with respect to the
coarse mesh results.

The stabilized formulations, described in the previous sec-
tion, can handle the unsteady discontinuities in the field,
such as moving shock waves and contact surfaces. In terms
of accuracy the full energy formulation is superior to the
reduced energy one. Moreover, the smoothness of the solu-
tion in the entire field shows the effectiveness of the SUPG
and DC stabilization operators.

3.2 2DMach 6 flat plate

The flat plate example is one of the fundamental benchmark
cases for code validation. The physics behind this case is

well understood. When a viscous flow interacts with a flat
plate at zero incidence angle, a boundary layer develops from
the leading edge and grows in thickness downstream. The
displacement effect of the boundary layer deflects the outer
inviscid flow away from the wall. When the flow is super-
sonic, a weak oblique shock wave forms at the leading edge
as a result of the displacement.

This case is based on the work presented in [10]. The
computational domain, illustrated in Fig. 3, extends for 1 [m]
in the x direction (free stream direction) and for 0.3 [m] in
the vertical direction.

At the inflow and top boundaries, the free stream condi-
tions are prescribed as p∞ = 5.17 [Pa], u∞ = 849.34 [m/s]
(parallel to the wall) and T∞ = 48.89 [K], that correspond
to M∞ = 6 and Re∞,L = 104, which is the local Reynolds
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Fig. 2 Details of the main features of the density distribution for the shocktube case [55]: front wave of the expansion fan (a), tail wave of the
expansion fan (b), contact surface (c) and shock wave (d). The analytical solution is represented by red circles and is shown for comparison

Fig. 3 Computational domain for the Mach 6 flat plate case with free
stream velocity at zero angle of attack

number at the reference length of 0.1 [m]. At the wall the
no slip condition for the velocity and a constant temperature

Tw = Taw = 353.57 [K] are prescribed, where

Taw = T∞
(
1 + γ − 1

2

√
PrM2∞

)
(42)

is the adiabatic temperature computed with a recovery factor
equal the square root of Prandtl number. At the outlet, zero
traction and zero heat transfer are prescribed. The following
Sutherland law is used for the viscosity computation:

μ = μr
Tr + S

T∞ + S

(
T∞
Tr

)1.5

(43)

where μr = 1.716 · 10−5 [Pa s], Tr = 273.15 [K] and S =
110.4 [K]. The thermal conductivity is k = μcp/Pr with
Pr = 0.72, while the specific heat ratio is γ = 1.4. The
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simulation was carried out using a constant time step �t =
5 · 10−6 [s], which corresponds to a maximum CFL of 4.

3.2.1 Grid convergence analysis

Together with the validation, the verification of a numer-
ical framework is essential. It is important to verify that
the partial differential equations of the model describing
the physical problem are solved correctly. The verification
process involves getting estimates of the numerical uncer-
tainties or numerical errors related to the discretization
methods. Indeed, the solution should be independent of the
grid and theoretically the exact solution (solution of the con-
tinuum equations) should be obtained when the grid spacing
approaches zero value. In this section numerical uncertain-
ties, in terms of grid convergence index (GCI), are presented
following the guidelines in [9]. Three different uniform struc-
tured grids are considered, a coarse grid of 107×32 elements,
a medium grid of 214 × 64 elements and a fine one of
428 × 128 elements. Since the meshes are uniform with
equal grid spacing in both directions x and y, it is easy to
define the grid size h which is simply the length of one cell.
The grid refinement factor for the coarse-medium meshes is
computed as r32 = h3/h2 and for the medium-fine meshes
r21 = h2/h1, being h1 < h2 < h3. In the case presented
here r32 = r21 = 2. The apparent order of convergence p
can be calculated as:

p = 1

log (r21)
| log |ε32/ε21| + q(p)| (44)

q(p) = log

(
r p21 − s

r p32 − s

)
(45)

s = sign

(
ε32

ε21

)
(46)

where ε32 = φ3 − φ2 and ε21 = φ2 − φ1, and φn refers to
the solution relative to the nth grid. The solution selected to
carry out the grid convergence analysis is the wall pressure
pw. It is possible to calculate the extrapolated value from
the solutions of the fine and medium grids, φext

21 , and from
solutions of medium and coarse grids, φext

32 , as follows:

φext
21 = r p21φ1 − φ2

r p21 − 1
(47)

φext
32 = r p32φ2 − φ3

r p32 − 1
(48)

Fig. 4 Wall pressure distribution for the coarse, medium and fine grid
together with the extrapolated value φext

21

Finally from the approximate relative errors:

e21a =
∣∣∣∣
φ1 − φ2

φ1

∣∣∣∣ (49)

e32a =
∣∣∣∣
φ2 − φ3

φ2

∣∣∣∣ (50)

The fine and medium grid convergence indexes can be com-
puted as below:

GC I 21f ine = Fse21a
r p21 − 1

(51)

GC I 32medium = Fse32a
r p32 − 1

(52)

where Fs = 1.25 is the safety factor. The grid conver-
gence indexes are estimates of the numerical uncertainties.
The average (global) GC I g values and the average order
of convergence pg are obtained by averaging over all the
local values. Applying the procedure just described to the
Mach 6 flat plate case, the following values are calculated:
pg ∼ 1, GC I f ine = 3.94% and GC Imedium = 6.28%. The
wall pressure distribution for the three grids is presented in
Fig. 4. The local GC I 21f ine (computed for every node of the
plate) is used to represent the numerical uncertainties as error
bars on the plot of the wall pressure distribution for the fine
grid. The result is shown in Fig. 5. It can be observed that
the approximate numerical error is large in the leading edge
region, close to the leading edge which is therefore a critical
point in the numerical analysis of this case.
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Fig. 5 Wall pressure distribution for the fine grid with numerical uncer-
tainties reported as error bars

3.2.2 Numerical results

Following the grid convergence study, the fine mesh is
selected for simulations (see Fig. 6). The grid spacing �x ∼
0.0023 [m] is uniform in the x direction, while a wall refine-
ment is adopted in the y direction with a minimum grid
spacing�y = 5·10−4 [m] at thewall. First, theMachnumber
contours are observed. The compression wave due to the vis-
cous boundary layer at the plate obtained from the full energy
formulation can be seen in Fig. 7. The reduced energy formu-
lation produces similar qualitative results, showing smooth
steady-state solution throughout the whole domain. The nor-
malizedMach profile at the station x = 0.75 [m] is shown for
both formulations in Fig. 8. The Mach profile is normalized
by the Mach number at the edge of the boundary layer, Me.

TheMach number at the edge of the boundary layer predicted
by the full energy formulation is Me = 5.65, while the one
predicted by the reduced energy formulation is Me = 5.7.
The spatial coordinate normal to the wall, y, is normalized
by the boundary layer thickness, which is δ = 0.056 [m] and
δ = 0.055 [m] for the full and reduced energy formulations
respectively. The results in Fig. 8 show good agreement with
the experiment data obtained by [47] except very close to
the wall due to technical difficulties in the velocity measure-
ments in the wind tunnel. The comparison of the skin friction
coefficient, c f , distribution along the platewith the numerical
results obtained using the finite difference method by [10], is
presented in Fig. 9. The results from both formulations show
an excellent agreement. Finally the non dimensional wall
pressure distribution, pw/p∞, is presented in Fig. 10. Again
the comparison with the numerical results in [10] shows the
robustness and accuracy of the two stabilized formulations
presented in this work at high Mach numbers.

3.3 2DMach 10 oblique shock problem

The oblique shock case presented in this section involves a
flat plate and a flow hitting the plate with 5◦ incidence. The
experimental test was performed at NASALangley’s 31-inch
Mach 10 facility [16]. The free stream flow is characterized
by Mach number M∞ = 9.7 and a Reynolds number based
on free stream values of Re∞ = 3.8 · 105. A weak oblique
shock wave forms at the leading edge of the wedge. The
computational domain corresponds to the flow region along
the top surface of the wedge and is shown in Fig. 11.

The domain is 0.2 [m] long and 0.03 [m] high and it is
discretized with a structured mesh of 1000 × 150 elements
shown in Fig. 12.

Fig. 6 Discretization of the
computational domain for the
flat plate case at Mach 6 with a
structure mesh

Fig. 7 Mach number contours
for the Mach 6 flat plate case
computed using the full energy
formulation. The black line
indicates the station
x = 0.75 [m]
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Fig. 8 The normalized Mach profile at x = 0.75 [m] compared to the
experiment data obtained by [47]

Fig. 9 The skin friction coefficient distribution along the wall is com-
pared to numerical results of [10]. The skin friction coefficient is defined
as: c f = 2τw/ (ρ∞‖u∞‖)

The grid is refined in both directions, x and y, at the
wall and at the leading edge of the plate. The minimum
grid spacing in x and y is �x = �y = 2.5 · 10−5 [m].
Defining u the velocity component parallel to the plate and
v the velocity component normal to the wall, the free stream
conditions prescribed at the inlet and top boundaries of the
domain are: u∞ = 1401.94 [m/s], v∞ = −122.65 [m/s],
p∞ = 68.4 [Pa] and T∞ = 52.3 [K]. The no slip conditions
and a constant temperature Tw = 314 [K] are prescribed at
the wall. Zero traction and zero heat flux are prescribed at
the outlet. For this case thermodynamic properties of real
gas are adopted (see [27]), while the transport properties are
calculated from the kinetic theory models. In particular the
viscosity is computed from the Chapman-Cowling relation
[15]:

Fig. 10 The wall pressure distribution non dimensionalized by the free
stream pressure (pw/p∞) is compared to the numerical results obtained
by [10]

Fig. 11 Computational domain for the Mach 9.7 oblique shock case

μ = 2.6693 · 10−6

√
MT

σ 2

[Pa · s] (53)

where σ = 3.689 [Å] [27] is collision diameter for air
and 
 are the collision integrals computed using empiri-
cal equations for the Lennard–Jones (12-6) potential [49].
The thermal conductivity is calculated from the kinetic the-
ory models in [26] with the modified Eucken correction as
below:

k = μ

(
15

4
+ 1.32

(
cp
R

− 5

2

))
R (54)

The Mach contours for full and reduced energy formulations
are shown in Fig. 13a, b respectively.

Figure 14 shows the Mach profile at x = 0.106 [m] where
the results are compared with simulation results using Open-
FOAM [4].

The results from the full energy formulation show very
good agreement. Some discrepancies, however, can be
observed in terms of the shock wave angle. The shock wave
angle predicted by the full energy formulation is βs ∼ 7◦,
while the angle predicted by the reduced energy formulation
is βs ∼ 6.3◦. The angle prediction of the full energy formu-
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Fig. 12 Discretization of the
computational domain for the
oblique shock example at Mach
9.7 with a structured mesh

Fig. 13 Mach number contours
for the Mach 9.7 oblique shock
case predicted by the full (a)
and the reduced (b) energy
formulation

Fig. 14 Mach profile at x = 0.106 [m] obtained using both formula-
tions is compared with numerical results of [4] for theMach 9.7 oblique
shock

lation is very close to the one predicted by OpenFOAM [4],
which is βa ∼ 7.2◦, while the reduced energy formulation
underpredicts this value. The smaller shock wave angle pre-
dicted by the reduced energy formulation is the reason behind
the higher Mach number predicted in the post-shock region.
The velocity profiles in the boundary layer at four different
locations, x = 0.588, 0.784, 0.91, 1.068 [m] are compared

with the experiment data [16] in Fig. 15. The results obtained
by both formulations are in very good agreement with the
experiment data.

3.4 2DMach 17.6 cylinder case

The two-dimensional cylinder case [48] described in this
section is a hypersonic benchmark case that has the goal
to show the robustness of the numerical framework in han-
dling a strong bow shock and the accuracy of the predictions
under such extreme flow conditions. The free stream flow
conditions are defined by a Mach number M = 17.6 and
a Reynolds number Re = 3.769 · 106. For hypersonic flow
past a cylinder, which is a blunt body, a strong, detached
shock wave develops and once the steady state is reached,
the shock stand-off distance can be measured. The inflow of
the computational domain is represented by an arc centered at
the cylinder’s center. The domain is 10 [m] long and 3.5 [m]
high. The computational domain is illustrated in Fig. 16.

The cylinder radius is 1 [m]. The domain is discretized
with a structured mesh of 60× 64 elements in the azimuthal
and radial directions respectively. The mesh is uniform in
the azimuthal direction, while it is refined close to the wall
with the first wall element’s height being 6 [mm]. The mesh
is shown in Fig. 17.

The free stream velocity, pressure and temperature are
v∞ = −4.9906 · 103 [m/s], p∞ = 576.2 [Pa] and T∞ =
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Fig. 15 Velocity profiles in the boundary layer at different locations along the plate for the Mach 9.7 oblique shock case. The profiles predicted by
the two formulations (full and reduced energy) are compared to the experiment data [16]

Fig. 16 Computational domain for the Mach 17.6 cylinder case

200 [K] respectively. The free stream conditions are pre-
scribed at the domain’s inlet. The no-slip condition and
constant temperature Tw = 500 [K] are prescribed at the
cylinder’s surface. Zero traction and zero heat flux are pre-
scribed at the outlet of the domain. The perfect gas relation

is used with the gas constant R = 287 [J/(kgK)] and spe-
cific heat ratio γ = 1.4. The Prandtl number is Pr = 0.71.
The temperature dependent viscosity is determined by the
Sutherland law:

μ = μr
Tr + S

T∞ + S

(
T∞
Tr

)1.5

(55)

where μr = 1.716 · 10−5 [Pa s], Tr = 273.15 [K] and S =
110.4 [K]. The thermal conductivity is computed from the
Prandtl number definition as k = μcp/Pr .

The simulations are carried out using both reduced and
full energy formulations and using two different DC oper-
ators, DC1 and DC2. The Mach contours visualizations in
Fig. 18 show that both formulations using the DC1 operator
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Fig. 17 Structured mesh for the
Mach 17.6 cylinder case

Fig. 18 Mach number contours for the Mach 17.6 cylinder case: a full energy with DC1, b reduced energy with DC1, c full energy with DC2, d
reduced energy with DC2

are affected by the carbuncle problem [21]. The carbuncle
phenomenon is a shock instability that appears when numer-
ical low-dissipative shock-capturing techniques are used [19]
to approximate multi-dimensional shock waves [21]. It is not
clear what causes the carbuncle phenomenon to appear and
there is not a universal solution for this numerical problem
[21]. In [19], it was observed that the upstream Mach num-
ber, the shock structure, and the computational grid affect
the carbuncle phenomenon. In this work the carbuncle prob-
lem is solved when the second DC operator, DC2, is adopted
instead of the operator DC1. Using the DC1 operator, numer-
ical instabilities arise at the shock wave for both formulation
as shown in Fig. 18a, b. The shock wave instability does
not appear when the DC2 operator is used (see Fig. 18c,
d). Comparing qualitatively Fig. 18a, c with Fig. 18b, d, it
can be observed that the full energy formulation predicts a
greater shock stand-off distance than the one predicted by the
reduced energy formulation. The shock stand-off distance
predicted by both formulations is compared with the data
presented in [48] and is shown in Table 1. Table 1 shows that
the full energy formulation is able to predict the shock stand-

Table 1 Shock stand-off distance value predicted by the full and
reduced energy formulations using the DC2 operator. Comparison with
the predictions by [48]

Predictions Stand-off [m] Relative error [%]

Full energy 0.49 9%

Reduced energy 0.24 46%

Mazaheri and Kleb [48] 0.45

off distance with good accuracy, while the reduced energy
formulation strongly underpredicts the distance value with a
relative error of 46% with respect to the predictions by [48].

3.5 Viking Lander capsule

The Viking Lander Capsule is an atmospheric re-entry
vehicle (see Fig. 19a). The availaibility of the capsule’s
geometry, numerical, experimental, and flight data make
the Viking Lander Capsule an excellent three-dimensional,
hypersonic benchmark case. The simulated model is shown
in Fig. 19b. The model dimensions are 3.48% of the cap-
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Fig. 19 The figure on the left a shows the real geometric dimensions of the Viking lander capsule [22]. The figure on the right b shows the
simulation model consisting of the capsule and the sting

Table 2 Tunnel flow conditions [20]

M ReD u [m/s] p [Pa] T [K] ρ [kg/m3]
6 1.24 · 106 946.4 718.1 62.8 3.961 · 10−2

sule real dimensions illustrated in Fig. 19a, which is similar
to the wind-tunnel experiment [35]. The model includes the
sting to match the experimental set-up [35]. The free stream
flow is characterized by a Mach number M = 6 and a
Reynolds number based on the scaled diameter of the cap-
sule D = 1.22 · 10−1 [m], ReD = 1.24 × 106. The tunnel
undisturbed flow conditions are computed in [20] and shown
in Table 2. At the inlet the free stream conditions shown in
Table 2 are prescribed. The no slip boundary conditions and a
constant temperature Tw = 300 [K] are prescribed at the cap-
sule and sting surfaces.At the outlet and laterals, zero traction
and zero heat transfer boundary conditions are imposed. The
fluid is assumed as a perfect gas with the specific heat ratio
γ = 1.4, the gas constant R = 287 [J/(kg K)] and Prandtl
number Pr = 0.72. The temperature dependent viscosity is
determined by the Sutherland law:

μ = μr
Tr + S

T∞ + S

(
T∞
Tr

)1.5

(56)

where μr = 1.716 · 10−5 [Pa s], Tr = 273.15 [K] and S =
110.4 [K]. The thermal conductivity is computed from the
Prandtl number definition as k = μcp/Pr .

The sketch of the computational domain is shown in
Fig. 20.

Fig. 20 Computational domain for the Viking Lander Capsule case

The model’s surfaces are discretized with linear triangu-
lar elements, while linear tetrahedron and prism elements
are used to discretize the volume and the boundary layer
respectively. The mesh used in the simulation involves
approximately 8millions volume elements. In order to assess
the resolution of the presentmeshwith respect to the one used
in [20], it is useful to define the wall Reynolds number as:

Rew = ρa�η

μ
(57)

where �η is the height of the first element at the wall and
the density ρ, the speed of sound a, and the viscosity μ are
computed at the wall. The boundary layer is resolved using
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10 normal elements and �η = 10−4 [m], giving a maximum
wall Reynolds number of around 700, which is relatively
high if compared with the wall grid spacing adopted by [20],
where they kept the values Rew = 1, 0.5 for the coarse
and fine meshes respectively. The mesh used for the present
simulations is illustrated in Fig. 21.

The simulations are carried out using both reduced and
full energy formulations and using DC2 operator. The sim-
ulations are carried out for two different angles of attack, in
particular α = 10◦, 20◦. For the case α = 20◦, in Fig. 22,
theMach contours and thewall pressure coefficient predicted
by the full (Fig. 22a) and reduced (Fig. 22b) energy formu-
lations are compared with the ones computed using NASA
LAURA code [20] (see Fig. 22c). The flow topology, such
as the shock stand-off distance and the bow shock shape,
simulated by the full energy formulation qualitatively agrees
with the LAURA predictions, while the reduced energy pre-
dicts a smaller shock stand-off distance. Themaximum value
of the pressure coefficient predicted by the reduced energy
formulation (Cp = 1.86) agrees very well with LAURA pre-
dictions (Cp = 1.85), while it is slightly underestimated by
the full energy formulation (Cp = 1.8). The aerodynamic
forces are computed by integrating the Cauchy stress tensor
acting on the wall surface,σσσ ·n, all over the capsule’s surface
and neglecting the sting contribution. Knowing that the axial
direction coincides with the x-axis and the normal direction

coincides with z-axis, the axial and normal forces are defined
as FA = Fx and FN = Fz respectively. The axialCA, normal
CN , liftCL and dragCD coefficients are calculated as below:

CA = FA

q∞Sre f
(58)

CN = FN

q∞Sre f
(59)

CL = −CA sin α + CN cosα (60)

CD = CA cosα + CN sin α (61)

where q∞ = 1/2ρ|u|2 is the free stream dynamic pressure
and Sre f = πD2/4 is the reference area. The values of the
aerodynamic coefficients predicted by both reduced and full
energy formulations are shown in Fig. 23 and tabulated in
Table 3 together with numerical and experiment data [20].

In Table 3 the relative error is computedwith respect to the
experiment values. Table 3 and Fig. 23 show that both formu-
lations predict aerodynamic forces with good accuracy even
though the boundary layer is poorly resolved if compared
with the one used in [20]. However, it is worth to notice that
the relative errors, with which the forces coefficients are pre-
dicted by the full energy formulation, in percentage remain
almost constant for the two angles of attack α, simulated.
This error consistency does not hold for the predictions of

Fig. 21 The computational mesh used for the Viking Lander Capsule case is illustrated in a, while the boundary layer resolution can be appreciated
in the mesh detail shown in b
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Fig. 22 Mach contours and wall pressure coefficient distribution for the case α = 20◦. The full energy predictions are shown in a, the reduced
energy predictions are in b, while results predicted by LAURA code [20] are shown in c

the reduced energy formulation, where the relative error for
the case α = 20◦ is greater than the one for the case α = 10◦.

4 Conclusion

In this work two SUPG finite element formulations with DC
for the solution of compressible flows are presented. In par-
ticular, the full-energy and reduced-energy formulations are
tested with the pressure-based primitive variable set in the
context of hypersonic flows and their relative accuracy is
assessed for this flow regime. Note that the reduced-energy
formulation is more convenient for fluid-structure interac-
tion modeling involving thermally-coupled solids, because
only the heat flux appears in the energy-equation slot of the
traction vector. Likewise, the pressure-based primitive vari-
ables (which is not the most common for hypersonic regime)
are more convenient for setting boundary conditions and
implementing FSI coupling. Moreover, pressure-primitive

variables lead to a natural extension of the weakly enforced
essential boundary condition and sliding-interface formu-
lations, originally defined for incompressible flows, to the
compressible flow regime (see e.g. [7,84]). The robustness,
stability, and accuracy of the two formulations are shown by
solving several benchmark cases for a wide range of Mach
numbers and cases complexity, such as the 1D Sod’s prob-
lem, the 2DMach 6 flat plate, the 2DMach 10 oblique shock
case, the 2D Mach 17.6 cylinder case, and the 3D Viking
Lander Capsule. The numerical results presented in Sect. 3
show that the proposed formulation behaves very well in the
context of high-speed flows maintaining good accuracy and
stability in both steady andunsteady cases.While stable in the
presence of strong shocks, the method is not over-diffusive
because the shock-capturing viscosity is residual based and
vanishes quickly in the part of the domain where the solution
is smooth.

The present paper clearly demonstrates that the full-
energy formulation is superior in accuracy relative to the
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Fig. 23 Forces coefficients as function of the free stream angle of attack
α. The axial force (a), normal force (b), lift (c) and drag (d) coefficients
and the lift to drag ratio (e) predicted by the full and reduced energy

formulations of the present simulations are compared to the numerical
results by [20] and to the experiment data by [35]
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Table 3 Forces coefficients
values for the two angles of
attack simulated using the
reduced and full energy
formulations

α CA CN CL CD L/D

10◦

Experiment 1.5628 0.02357 −0.24828 1.54341 −0.16063

LAURA 1.53969 0.02197 −0.2458 1.52348 −0.16132

Full energy 1.51404 0.02139 −0.24185 1.49475 −0.1618

(3.12%) (9.26%) (2.59%) (3.15%) (0.73%)

Reduced energy 1.56499 0.02835 −0.24384 1.54614 −0.15771

(0.14%) (20.31%) (1.79%) (0.18%) (1.82%)

20◦

Experiment 1.44095 0.05085 −0.44276 1.36593 −0.32438

LAURA 1.42042 0.0482 −0.44049 1.35059 −0.32566

Full energy 1.39502 0.04928 −0.43081 1.32775 −0.32447

(3.19%) (3.09%) (2.7%) (2.8%) (0.03%)

Reduced energy 1.40717 0.06559 −0.41965 1.34474 −0.31207

(2.34%) (28.97%) (5.22%) (1.55%) (3.8%)

Experiment and numerical (LAURA) data are extracted from [20]

reduced-energy formulation for hypersonic flows. There
appears to be a bias error associated with the reduced energy
formulation near shock waves, resulting in weaker shocks
than would otherwise occur. In addition, the DC technique
that makes use of a single viscosity parameter based on the
weighted norms of the residual and solution gradient, and
capped at the maximum allowable value corresponding to
upwind viscosity, is able to overcome the well-known car-
buncle instability without smearing the shock.

The successful performance of the proposed formulation
for high-speed flows sets the stage for the deployment of the
techniques developed to more advanced applications such
as fluid–structure interaction modeling of hypersonic air-
craft.Moreover, the frameworkwill be augmentedwithweak
imposition of the Dirichlet boundary conditions to relax the
requirement on a boundary layer resolution. It should also
be noted that we have not considered the reacting flows in
the present work and will augment the formulation with the
chemistry model in the future work.
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Appendix A

The matrices used for Navier–Stokes equations of compress-
ible flows with full energy equation are given by

Ã0 =

⎡
⎢⎢⎢⎢⎣

ρβT 0 0 0 −ραp

ρβT u1 ρ 0 0 −ραpu1
ρβT u2 0 ρ 0 −ραpu2
ρβT u3 0 0 ρ −ραpu3
ρβT etot ρu1 ρu2 ρu3 ρ

(−αpetot + cv
)

⎤
⎥⎥⎥⎥⎦
, (A.1)

where βT = 1/p, αp = 1/T .
Its inverse Ã−1

0 = Y
,Ũ is given by

Ã−1
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−αpetot + αp‖u‖2 + cv
ρβT cv

− αpu1
ρβT cv

− αpu2
ρβT cv

− αpu3
ρβT cv

αp

ρβT cv

−u1
ρ

1

ρ
0 0 0

−u2
ρ

0
1

ρ
0 0

−u3
ρ

0 0
1

ρ
0

‖u‖2 − etot
ρcv

− u1
ρcv

− u2
ρcv

− u3
ρcv

1

ρcv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.2)
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We then give the details of the Euler Jacobian matrices by

Ãadv\p
1 =

⎡
⎢⎢⎢⎢⎣

ρβT u1 ρ 0 0 −ραpu1
ρβT u21 2ρu1 0 0 −ραpu21

ρβT u1u2 ρu2 ρu1 0 −ραpu1u2
ρβT u1u3 ρu3 0 ρu1 −ραpu1u3

(ρβT etot + 1) u1 ρ
(
etot + u21

) + p ρu1u2 ρu1u3 ρ
(−αpetot + cv

)
u1

⎤
⎥⎥⎥⎥⎦
, (A.3)

Ãadv\p
2 =

⎡
⎢⎢⎢⎢⎣

ρβT u2 0 ρ 0 −ραpu2
ρβT u1u2 ρu2 ρu1 0 −ραpu1u2
ρβT u22 0 2ρu2 0 −ραpu22

ρβT u2u3 0 ρu3 ρu2 −ραpu2u3
(ρβT etot + 1) u2 ρu1u2 ρ

(
etot + u22

) + p ρu2u3 ρ
(−αpetot + cv

)
u2

⎤
⎥⎥⎥⎥⎦
, (A.4)

Ãadv\p
3 =

⎡
⎢⎢⎢⎢⎣

ρβT u3 0 0 ρ −ραpu3
ρβT u1u3 ρu3 0 ρu1 −ραpu1u3
ρβT u2u3 0 ρu3 ρu2 −ραpu2u3
ρβT u23 0 0 2ρu3 −ραpu23

(ρβT etot + 1) u3 ρu1u3 ρu2u3 ρ
(
etot + u23

) + p ρ
(−αpetot + cv

)
u3

⎤
⎥⎥⎥⎥⎦
, (A.5)

Ãp
1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.6)

Ãp
2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.7)

Ãp
3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
. (A.8)

Note that Ãi = Ãadv\p
i + Ãp

i .
Finally, we give the diffusive matrices by

K̃11 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 2μ + λ 0 0 0
0 0 μ 0 0
0 0 0 μ 0
0 (2μ + λ) u1 μu2 μu3 κ

⎤
⎥⎥⎥⎥⎦
, (A.9)

K̃12 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 λ 0 0
0 μ 0 0 0
0 0 0 0 0
0 μu2 λu1 0 0

⎤
⎥⎥⎥⎥⎦
, (A.10)

K̃13 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 λ 0
0 0 0 0 0
0 μ 0 0 0
0 μu3 0 λu1 0

⎤
⎥⎥⎥⎥⎦
, (A.11)

K̃21 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 μ 0 0
0 λ 0 0 0
0 0 0 0 0
0 λu2 μu1 0 0

⎤
⎥⎥⎥⎥⎦
, (A.12)

K̃22 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 μ 0 0 0
0 0 2μ + λ 0 0
0 0 0 μ 0
0 μu1 (2μ + λ) u2 μu3 κ

⎤
⎥⎥⎥⎥⎦
, (A.13)

K̃23 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 λ 0
0 0 μ 0 0
0 0 μu3 λu2 0

⎤
⎥⎥⎥⎥⎦
, (A.14)

K̃31 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 μ 0
0 0 0 0 0
0 λ 0 0 0
0 λu3 0 μu1 0

⎤
⎥⎥⎥⎥⎦
, (A.15)
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K̃32 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 μ 0
0 0 λ 0 0
0 0 λu3 μu2 0

⎤
⎥⎥⎥⎥⎦
, (A.16)

K̃33 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 μ 0 0 0
0 0 μ 0 0
0 0 0 2μ + λ 0
0 μu1 μu2 (2μ + λ) u3 κ

⎤
⎥⎥⎥⎥⎦
. (A.17)

For the Navier–Stokes equations with reduced energy for-
mulation, the matrices corresponding to pressure-primitive
variables are as follows:

The matrix A0 = U,Y is given by

A0 =

⎡
⎢⎢⎢⎢⎣

ρβT 0 0 0 −ραp

ρβT u1 ρ 0 0 −ραpu1
ρβT u2 0 ρ 0 −ραpu2
ρβT u3 0 0 ρ −ραpu3
ρβT e 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.18)

It’s inverse A−1
0 = Y,U is given by

A−1
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
αp

ρβT cv

−u1
ρ

1

ρ
0 0 0

−u2
ρ

0
1

ρ
0 0

−u3
ρ

0 0
1

ρ
0

−T

ρ
0 0 0

1

ρcv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.19)

The Euler–Jacobian matrices are given by

Aadv\p
1 =

⎡
⎢⎢⎢⎢⎣

ρβT u1 ρ 0 0 −ραpu1
ρβT u21 2ρu1 0 0 −ραpu21

ρβT u1u2 ρu2 ρu1 0 −ραpu1u2
ρβT u1u3 ρu3 0 ρu1 −ραpu1u3
ρβT eu1 ρe 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.20)

Aadv\p
2 =

⎡
⎢⎢⎢⎢⎣

ρβT u2 0 ρ 0 −ραpu2
ρβT u1u2 ρu2 ρu1 0 −ραpu1u2
ρβT u22 0 2ρu2 0 −ραpu22

ρβT u2u3 0 ρu3 ρu2 −ραpu2u3
ρβT eu2 0 ρe 0 0

⎤
⎥⎥⎥⎥⎦
, (A.21)

Aadv\p
3 =

⎡
⎢⎢⎢⎢⎣

ρβT u3 0 0 ρ −ραpu3
ρβT u1u3 ρu3 0 ρu1 −ραpu1u3
ρβT u2u3 0 ρu3 ρu2 −ραpu2u3
ρβT u23 0 0 2ρu3 −ραpu23
ρβT eu3 0 0 ρe 0

⎤
⎥⎥⎥⎥⎦
, (A.22)

Ap
1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.23)

Ap
2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.24)

Ap
3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
. (A.25)

Asp
1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 p − τ11 −τ12 −τ13 0

⎤
⎥⎥⎥⎥⎦
. (A.26)

Asp
2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −τ21 p − τ22 −τ23 0

⎤
⎥⎥⎥⎥⎦
. (A.27)

Asp
3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −τ31 −τ32 p − τ33 0

⎤
⎥⎥⎥⎥⎦
. (A.28)

The diffusivity matrices are given by

K11 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 2μ + λ 0 0 0
0 0 μ 0 0
0 0 0 μ 0
0 0 0 0 κ

⎤
⎥⎥⎥⎥⎦
, (A.29)

K12 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 λ 0 0
0 μ 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.30)
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K13 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 λ 0
0 0 0 0 0
0 μ 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.31)

K21 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 μ 0 0
0 λ 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.32)

K22 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 μ 0 0 0
0 0 2μ + λ 0 0
0 0 0 μ 0
0 0 0 0 κ

⎤
⎥⎥⎥⎥⎦
, (A.33)

K23 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 λ 0
0 0 μ 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.34)

K31 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 μ 0
0 0 0 0 0
0 λ 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.35)

K32 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 μ 0
0 0 λ 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, (A.36)

K33 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 μ 0 0 0
0 0 μ 0 0
0 0 0 2μ + λ 0
0 0 0 0 κ

⎤
⎥⎥⎥⎥⎦
. (A.37)

The matrices for the conservation variables may be
obtained from the corresponding matrices for the pressure-
primitive variables using the following transformations:

Âi = AiA
−1
0 , Âadv\p

i = Aadv\p
i A−1

0 , Âp
i = Ap

i A
−1
0 ,

Âsp
i = Asp

i A−1
0 , and K̂i j = Ki jA

−1
0
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